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Abstract—Subspace clustering is an effective method that has been successfully applied to many applications. Here, we propose a

novel subspace clustering model for multi-view data using a latent representation termed Latent Multi-View Subspace Clustering

(LMSC). Unlike most existing single-view subspace clustering methods, which directly reconstruct data points using original features,

our method explores underlying complementary information from multiple views and simultaneously seeks the underlying latent

representation. Using the complementarity of multiple views, the latent representation depicts data more comprehensively than each

individual view, accordingly making subspace representation more accurate and robust. We proposed two LMSC formulations: linear

LMSC (lLMSC), based on linear correlations between latent representation and each view, and generalized LMSC (gLMSC), based on

neural networks to handle general relationships. The proposed method can be efficiently optimized under the Augmented Lagrangian

Multiplier with Alternating Direction Minimization (ALM-ADM) framework. Extensive experiments on diverse datasets demonstrate the

effectiveness of the proposed method.

Index Terms—Multi-view clustering, subspace clustering, latent representation, neural networks
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1 INTRODUCTION

SUBSPACE clustering has been successfully used in
numerous applications, especially those involving

high-dimensional data [1], [2]. Existing subspace cluster-
ing approaches can be categorized into iterative methods
[3], [4], algebraic approaches [5], [6], statistical methods
and spectral clustering-based methods [7], [8]. Recently
proposed subspace clustering methods [9], [10], [11],
[12], [13], [14] are based on the assumption that
data points are drawn from multiple subspaces corre-
sponding to different clusters, where each data point
can be expressed by a linear combination of the data
points themselves. The general formulation of existing

subspace clustering methods is

min
Z

LðX;XZÞ þ �VðZÞ; (1)

where X ¼ ½x1; . . . ; xn� is the d� n feature matrix whose col-
umns are the samples, and � > 0 is the tradeoff factor. The
loss function Lð�; �Þ and regularization term Vð�Þ are usually
defined under specific assumptions. The representative
approach-Sparse Subspace Clustering (SSC) [9]-focuses on
searching for the sparsest representation from an infinite
number of possible representations based on the ‘1-norm.
Unlike SSC, which separately constructs the sparsest repre-
sentation for each data point, Low-Rank Representation
(LRR) [10] tries to find the lowest rank representation of all
data jointly by using the structured sparsity loss. Con-
strained by graph regularization, SMooth Representation
clustering (SMR) [11] investigates theoretically the grouping
effect for self-representation based approaches. With the
reconstruction coefficient matrix Z, the affinity matrix is
obtained by S ¼ absðZÞ þ absðZT Þ, where absð�Þ is the ele-
ment-wise absolute operator. Finally, with the affinity
matrix S as the input, the final clustering result is obtained
by conducting standard spectral clustering [7].

Although these subspace clustering approaches are effec-
tive, they tend to be heavily influenced by the original
features, especially when the observations are insufficient
and/or grossly corrupted. Fortunately, multi-view subspace
clustering methods [15], [16], [17] have been proposed to
overcome this issue, in which multiple views describe each
data point. The complementary information from multiple
views can benefit clustering, and the effectiveness has been
empirically proven under different multi-view constraints.
Existing multi-view subspace clustering methods usually
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reconstruct the data points on the original view directly and
generate individual, view-specific subspace representations,
and generally share the following formulation:

min
fZðvÞgVv¼1

L�fðXðvÞ;XðvÞZðvÞÞgVv¼1

�þ �V
�fZðvÞgVv¼1

�
; (2)

whereXðvÞ andZðvÞ correspond to the featurematrix and sub-
space representation of the vth view, respectively. Using the
above formulation, existing methods employ different loss
functions Lð�; �Þ and impose different assumptions (with
different regularization terms Vð�Þ) to explore relationships
between subspace representations of multiple views.
Although these methods have achieved promising results,
they insufficiently describe data within each view, making
reconstruction using only information from one view risky.
Moreover, noise-which is ubiquitous-further increases the
difficulty in reconstruction on the original feature space.

Here we propose using a latent representation for multi-
ple views to explore the relationships between data points
and effectively deal with noise. As discussed in [18], [19],
the underlying assumption is that multiple views originate
from one underlying latent representation, which depicts
the essence of the data and reveals the common underlying
structure shared by different views. Based on this assump-
tion, we propose a novel method that we call Latent Multi-
view Subspace Clustering (LMSC). Our approach learns a
latent representation to encode complementary information
from multi-view features and produces a common sub-
space representation for all views rather than that of each
individual view. More importantly, and expanding on the
linear correlation used in our previous work [20], we fur-
ther generalize our model for non-linear correlation, and
accordingly propose generalized Latent Multi-view Subspace
Clustering (gLMSC). Our method jointly learns the latent
representation and multi-view subspace representation
within a unified framework, which can be effectively opti-
mized using the Augmented Lagrangian Multiplier with
Alternating Direction Minimization (ALM-ADM) strat-
egy. We conduct extensive experiments to compare our
method with the current state-of-the-art to demonstrate
our model’s performance.

The main contributions of this paper are as follows:

� Based on self-representation-based subspace cluster-
ing, we propose a novel multi-view subspace clus-
tering method called Latent Multi-view Subspace
Clustering, which can integrate multiple views into a
comprehensive latent representation.

� The automatically learned latent representation enco-
des complementary information from different views
and can meet the self-expressiveness property thus it
well reflects the underlying clustering structure.

� In addition to exploring linear correlations between
the latent representation and each view, we further
introduce neural networks to explore more general
relationships and propose the generalized Latent
Multi-view Subspace Clustering method.

� Finally, our formulation is effectively solved by
using the Alternating Direction Minimization
(ADM) and our optimization algorithm empirically
reaches convergence.

The remainder of the paper is organized as follows.
Related works, including multi-view learning, multi-view

subspace-based clustering, and latent representation-based
clustering methods are briefly reviewed in Section 2. Details
of our proposed approach are presented in Section 3. In
Section 4, we present experimental results that demonstrate
our model’s performance using a variety of real-world data-
sets. Conclusions are drawn in Section 5.

2 RELATED WORK

Based on the ubiquitous multi-view data, multi-view learn-
ing [21], [22], [23], [24], [25] has shown remarkable success in
a wide range of real-world applications. Most existingmulti-
view clustering methods are graph-based models. One of
the early methods presented in [26] focuses on handling
two-view data. Under amatrix factorization framework, some
methods [27], [28] attempt to uncover a common representa-
tion to link different views for clustering. Themulti-view sub-
space clustering methods [15], [16], [17] relate different data
points in a self-representing manner on the original view
and simultaneously constrain these subspace representa-
tions of different views to exploit complementary informa-
tion. Based on spectral clustering, [29], [30] co-regularize the
clustering hypothesis of different views to enforce consis-
tence. For large-scale data, a robust, large-scale, multi-view
k-means clustering method [31] can be parallelized and run
onmulti-core processors for large-scale data clustering.Mul-
tiple Kernel Learning (MKL) can be considered a nature way to
integrate multiple views. As a result, the method in [32]
directly combines multiple kernels corresponding to differ-
ent views and validated the approach’s effectiveness. Based
on MKL, [33] further proposes to automatically weight dif-
ferent views. There are some multi-view methods focusing
on other topics, e.g., dimensionality reduction [34] and fea-
ture selection [35].

Two groups of multi-view subspace clustering methods
are most related to ours. The first employs CCA to project
multiple views onto a low-dimensional subspace and then
uses the learned representation for clustering [36]. The second
group are the self-representation-based methods [15], [16],
[17]. Diversity-induced Multi-view Subspace Clustering
(DiMSC) [15] explores complementary information with
Hilbert-Schmidt Independence Criterion (HSIC) under the
self-representation subspace clustering framework. Low-
Rank Tensor Constrained Multi-view Subspace Clustering
(LT-MSC) [16] explores the high-order correlation among
these subspace representations. The method in [17] unifies
different views with a common indicator matrix rather than a
common subspace representation. Thesemethods reconstruct
data points within each single view. Instead, our method con-
structs a unified similarity matrix for multiple views by using
a latent representation, and thus well utilizes complementar-
ity across different views for subspace clustering.

Under the self-representation-based subspace clustering
framework, some methods [9], [10] introduce latent repre-
sentations. Latent Space Sparse Subspace Clustering (LS3C)
[37] jointly performs dimensionality reduction and sparse
coding on sparse subspace clustering [9]. Latent Low-Rank
Representation (LatLRR) [38] is based on LRR [10] and con-
structs a dictionary by jointly using observed and hidden
data. The methodology of ours is quite different from these
work: (1) Our algorithm performs subspace clustering with
the learned common latent representation, while thesemeth-
ods conduct data self-representation within each single
view. (2) The correlations among different views are linear
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for these methods, while our algorithm gLMSC explores
more general correlations by neural networks. There are also
some algorithms for multi-view representation learning.
Some approaches [18], [19], [39] explicitly learn a common
representation for multiple views as a joint optimization
problem with a common subspace representation matrix.
Generalized Multiview Analysis (GMA) [40] is an extension
of Canonical Correlational Analysis (CCA), which is
designed for cross-view classification and retrieval. Multi-
view LSA [41] is an algorithm that can efficiently approxi-
mate Generalized Canonical Correlational Analysis (GCCA).
Beyond kernel technique, Deep Canonical Correlation Anal-
ysis (DCCA) [42] explores nonlinear correlation between
views with neural networks. Some recent approaches [43],
[44] aim to learn a new representation based on auto-
encoders. In contrast to thesemethods, which learn the latent
representation by linearly [37] or non-linearly [43], [44] map-
ping the original single-view data, our method jointly recov-
ers the latent multi-view representation and the mappings
corresponding to different views to encode the intrinsic com-
plementary information.

3 LATENT MULTI-VIEW SUBSPACE CLUSTERING

In our method, subspace clustering is performed based on
the latent representation encoding complementary informa-
tion in multiple views. Specifically, given n multi-view obs-

ervations f½xð1Þi ; . . . ; x
ðV Þ
i �gni¼1 consisting of V different views,

our model aims to seek a shared multi-view latent represen-
tation h for each data point. The underlying assumption is
that these different views originate from one underlying
latent representation. Basically, in one respect, the informa-
tion from different views should be encoded into the learned
representation. In another respect, the learned latent repre-
sentation should meet the specific task (task-oriented goal),
e.g., self-representation or subspace reconstruction. There-
fore, we consider the general objective function

IðfXvgVv¼1;H;QQ1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
information preservation

þ� SðH;QQ2Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
task-oriented goal

: (3)

where H ¼ ½h1; . . . ;hn� 2 Rk�n is the latent representation
matrix. The first term Ið�; �Þ ensures that the latent represen-
tation encodes information from the original views, thus
avoids the bias of the latent representation towards the spe-
cific task. The second term Sð�; �Þ is the task-oriented term.
� > 0 balances the two terms.QQ1 andQQ2 are the parameters
corresponding to Ið�; �Þ and Sð�; �Þ, respectively.

Specifically, for latent multi-view subspace clustering,
which aims to explore the subspace structure based on the
latent representation, we have the following formulation:

min
uuv;H;Z

LSðH;HZÞ þ
XV
v¼1

avLV ðF vðH; uuvÞ;XðvÞÞ þ �VðZÞ; (4)

where LSðH;HZÞ is the loss function for the subspace repre-
sentation. LV ðF vðH; uuvÞ;XðvÞÞ and F vðH; uuvÞ are the recon-
struction loss and underlying mapping from the latent
representation H to the observations for the vth view,
respectively. The tradeoff factors av > 0 and � > 0 are
used to control the influence of the vth view and regulari-
zation degree of subspace representation, respectively.
With objective function (4), we can learn the latent multi-
view representation, which benefits from complementar-
ity of all views and is therefore beneficial to subspace

clustering. In our work, we propose two latent multi-
view subspace clustering methods: linear (l)LMSC and
generalized (g)LMSC.

3.1 Linear Latent Multi-view Subspace Clustering
We first model the correlation between the latent represen-
tation and each view by using a linear model, termed linear
Latent Multi-view Subspace Clustering (lLMSC). As shown
in Fig. 1, observations corresponding to different views
can be linearly recovered with their respective models
fPð1Þ; . . . ;PðV Þg based on the shared latent representation hi,
i.e., x

ðvÞ
i ¼ PðvÞhi. Considering noise in observations, we have

x
ðvÞ
i ¼ PðvÞhi þ e

ðvÞ
i ; (5)

where e
ðvÞ
i is the noise of the ith sample in the vth view. To

infer the multi-view latent representation, the objective
function becomes

min
P;H

LV ðX;PHÞ;

with X ¼
Xð1Þ

� � �
XðV Þ

2
64

3
75 and P ¼

Pð1Þ

� � �
PðV Þ

2
64

3
75; (6)

where X and P are the observations and reconstruction
models concatenated and aligned according to multiple
views, respectively. The loss function LV ð�; �Þ is associated
with the reconstruction from the latent (hidden) representa-
tion to different views. In this way, complementary infor-
mation from multiple views is automatically encoded into
the latent representation H, making it more comprehensive
than that of each single view individually.

For the task-oriented goal (the second term in Eq. (3)),
our aim is to perform subspace clustering as in Eq. (1).
Therefore, the objective function based on latent representa-
tionH is reformulated as

min
Z

LSðH;HZÞ þ �VðZÞ; (7)

where the loss function LSðH;HZÞ is defined based on the
self-representation-based reconstruction error. The recon-
struction coefficient matrix Z is regularized with VðZÞ.

For multi-view subspace clustering, we jointly conduct
latent representation learning in Eq. (6) and subspace clus-
tering in Eq. (7) within one unified objective function

Fig. 1. Illustration of multi-view latent representation. Observations

fXðvÞgVv¼1 (V � 2) corresponding to different views are partially projected

by fPðvÞgVv¼1 from one underlying latent representationH.
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min
P;H;Z

LV ðX;PHÞ þ �1LSðH;HZÞ þ �2VðZÞ; (8)

where �1 > 0 and �2 > 0 are the tradeoff parameters used
to balance the three terms. Generally, the quality of sub-
space clustering is improved by a comprehensive latent
representation, while the quality of the latent representation
is ensured by the complementary information frommultiple
views and the clustering structure identification. Consider-
ing outliers, the objective function of lLMSC is

min
P;H;Z;EV ;ES

EVk k2;1 þ �1 ESk k2;1 þ �2 Zk k�
s:t: X ¼ PHþ EV ;H ¼ HZþ ES and PPT ¼ I;

(9)

where EV and ES denote the errors corresponding to recon-
struction from the latent representation to each view and
subspace representation, respectively. The subspace repre-
sentation is ensured to be low-rank with matrix nuclear
norm jj � jj�. The ‘2;1-norm jj � jj2;1 enforces columns of a

matrix to be zero [10]. The definition of ‘2;1-norm used for a

matrix (A) is: Ak k2;1 ¼
Pq

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
i¼1 A

2
ij

q
with A 2 Rp�q. It is

robust to outliers due to its underlying assumption that the
corruptions are sample-specific. The projection matrix P is

constrained to avoid H being pushed arbitrarily close to

zero, since rescaling H=s and Ps ðs > 0Þ preserves the same

loss. For our objective function, the first term ensures that the

latent representation H is comprehensive, while the second

term relates data points with subspace representation. The

last term finds the lowest rank subspace representation and

prevents a trivial solution. Note that our model holds the
robustness from: (1) complementary information in different

views enhances robustness compared to each single view,

subsequently improving clustering; (2) the structured spar-

sity regularization with the ‘2;1-norm on the error handles

outliers well compared to the Frobenius norm.
To ensure that the outliers are consistent with the errors

ES and EV , we vertically concatenate them along column.
This enforces ES and EV to be with the same pattern of col-
umn-wise sparsity [45]. Accordingly, the final objective
function of our lLMSC is formulated as

min
P;H;Z;EV ;ES

Ek k2;1 þ � Zk k�
s:t: X ¼ PHþ EV ; H ¼ HZþ ES;

E ¼ ½EV ;ES� and PPT ¼ I:

(10)

In our model, only one parameter � > 0 is involved to bal-
ance the reconstruction error and regularization on sub-
space representation.

3.1.1 lLMSC Optimization

According to the objective function of our lLMSC in Eq. (11),
we simultaneously seek the effective latent representations
from different views and obtain the affinity matrix based on
the latent representations. Since it is not jointly convex for
all the variables, we divide our objective function into
subproblems that can be efficiently solved. We employ the
Augmented Lagrange Multiplier (ALM) with Alternating
Direction Minimization strategy [46] for our optimization.
To adopt the ADM strategy, the objective function should
be separable. Hence, auxiliary variable J is introduced to

replace Z. Accordingly, the following problem, which is
equivalent to Eq. (11), is proposed:

min
P;H;Z;EV ;ES;J

Ek k2;1 þ � Jk k�
s:t: X ¼ PHþ EV ; H ¼ HZþ ES;

E ¼ ½EV ;ES�; PPT ¼ I and J ¼ Z:

(11)

To solve the above objective function, we minimize the
following ALM problem:

LðP;H;Z;EV ;ES; JÞ
¼ Ek k2;1þ� Jk k�
þFðY1;X� PH� EV Þ
þFðY2;H�HZ� ESÞ þFðY3; J� ZÞ

s:t: E ¼ ½EV ;ES�; PPT ¼ I:

(12)

Note that, for better presentation, we have the definition as:
FðC;DÞ ¼ m

2 jjDjj2F þ hC;Di, where h�; �i is known as the Fro-
benius inner product defined by hA;Bi ¼ trðATBÞ. m > 0 is
the penalty scalar and C is the Lagrangian multiplier.
According to the Alternating Direction Minimization strat-
egy [46], we separate our objective into subproblems that
can be efficiently optimized. Then, the optimization is
cycled over all variables while keeping the previously
updated variables fixed. Specifically, each subproblem is
solved as follows:

1. P-subproblem. With other variables fixed, we should
optimize the following problem for updating P:

P� ¼ argminPFðY1;X� PH� EV Þ
s:t: PPT ¼ I:

(13)

To efficiently solve the above problem, we introduce Theo-
rem 1 [47] which is used for “Wahba’s problem”, i.e., seek-
ing a (orthogonal) rotation matrix between two coordinate
systems given a set of observations.

Theorem 1. Given the objective function minRjjQ�GRjj2F
s:t: RTR ¼ RRT ¼ I, the optimal solution is R ¼ UVT ,
where U and V are left and right singular values of SVD
decomposition ofGTQ.

We can show that PT ¼ UVT is the optimal solution for
the P-subproblem with U (V) being the left (right) singular
values ofHðXþ Y1=m� EV ÞT . Specifically, we have

P� ¼ argminPFðY1;X� PH� EV Þ
¼ argminP

m

2
jjX� PH� EV þ Y1=mjj2F

¼ argminP
m

2
jjðXþ Y1=m� EV Þ � PHjj2F

¼ argminP
m

2
jjðXþ Y1=m� EV ÞT �HTPT jj2F :

According to Theorem 1, if P is constrained to be orthogo-

nal (i.e., PPT ¼ PTP ¼ I), PT ¼ UVT will be the optimal solu-
tion. In practice, the constraint for P could be relaxed (i.e.,
PPT ¼ I, where P 2 Rd�k; k 	 d). Promising performance
and convergence results validate this relaxation.

2. H-subproblem. To update H, the following objective
should be optimized:
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H� ¼ argminHFðY1;X� PH� EV Þ
þFðY2;H�HZ� ESÞ:

(14)

Differentiating the objective function with respect to H
and then setting the derivative to zero, we obtain the fol-
lowing equation:

AHþHB ¼ C

with A ¼ mPTP;B ¼ mðZZT � Z� ZT þ IÞ;
C ¼ ðPTY1 þ Y2ðZT � IÞÞ

þ mðPTXþ ET
S � PTEV � ESZ

T Þ:

(15)

Equation (15) is a Sylvester equation [48]. For stability,
matrix A is enforced to be strictly positive-definite with
Â ¼ Aþ �I. The matrix I is an identity matrix and � is a
small positive scalar, i.e., 0 < � 	 1.

Proposition 1. The Sylvester equation (15) has a unique solution.

Proof. There is a unique solution for Sylvester equation
ÂHþHB ¼ C with respect to H if there is no common
eigenvalue for Â and -B [48]. Matrix Â is positive-definite,
so all eigenvalues of Â are positive, i.e., ai > 0. Matrix B
is positive semi-definite, so all eigenvalues of B are non-
negative, i.e., bi � 0. Therefore, ai þ bj > 0 holds for any
eigenvalues of Â and B. Accordingly, there is a unique
solution for Sylvester equation (15). tu

Remark. We employ the Bartels-Stewart algorithm [48] to
solve the Sylvester equation. In this algorithm, the coeffi-
cient matrices are transformed into Schur forms by QR
decomposition before employing back-substitution to
solve the obtained triangular system. Note that, the pro-
posed model can be solved exactly under the condition
PPT ¼ PTP ¼ I. That is to say, then A ¼ mPTP is a posi-
tive-definite matrix, and P is orthogonal.

3. Z-subproblem. With the other variables fixed, the sub-
space representation matrix Z can be updated by optimizing
the following objective function:

Z� ¼ argminZFðY3; J� ZÞ þFðY2;H�HZ� ESÞ: (16)

Accordingly, the following update rule is obtained:

Z� ¼ ðHTHþ IÞ�1½ðJþHTH�HTESÞ
þ ðY3 þHTY2Þ=m�:

(17)

4. E-subproblem. To update the reconstruction error E, we
need to solve the following problem:

E� ¼ argminE Ek k2;1 þ FðY1;X� PH� EV Þ
þFðY2;H�HZ� ESÞ

¼ argminE
1

m
Ek k2;1þ

1

2
E�Gk k2F ;

(18)

where the matrix G is constructed by vertically concatenat-
ing X� PHþ Y1=m and H�HZþ Y2=m. The optimal solu-
tion can be obtained by Lemma 3.2 in [10].

5. J-subproblem. With the other variable fixed, we obtain
the following objective function with respect to J:

J� ¼ argminJ� Jk k�þFðY3; J� ZÞ
¼ �

m
Jk k�þ

1

2
J� ðZ� Y3=mÞk k2F :

(19)

This low-rank approximation problem can be solved with
the singular value thresholding (SVT) algorithm [49].

6. Updating Multipliers. The multipliers can be updated
with the following rule:

Y1 ¼ Y1 þ mðX� PH� EV Þ
Y2 ¼ Y2 þ mðH�HZ� ESÞ
Y3 ¼ Y3 þ mðJ� ZÞ:

8<
: (20)

The complete algorithm of lLMSC is shown in Algorithm 1.

Algorithm 1. Optimization Algorithm for lLMSC

Input: Multi-view matrices: fXð1Þ; . . . ;XðV Þg, hyperparameter
� and the dimension k of latent representationH.

Initialize: P ¼ 0, EV ¼ 0, ES ¼ 0, J ¼ Z ¼ 0, Y1 ¼ 0, Y2 ¼ 0,
Y3 ¼ 0, m ¼ 10�6, r ¼ 1:2, � ¼ 10�4, maxm ¼ 106; Initialize H
with random values.
while not converged do
Update variables P;H;Z;EV ;ES; J according to subproblems
1-5;
Update multipliers Y1;Y2;Y3 according to subproblems 6;
Update the parameter m by m ¼ minðrm; maxmÞ;
Check the convergence conditions:
jjX� PH� EV jj1 < �; jjH�HZ� ESÞjj1 < � and jjJ�
Zjj1 < �.

end
Output: Z,H, P and E.

Remark. Several details of our algorithm must be clarified.
(1) We employ linear projection which is effective and
easy to resolve. The non-linear correlation is addressed in
the next section. (2) For the P-subproblem optimization,
although orthogonal condition is needed for the strict cor-
rectness, promising performance and stable convergence
are achieved with low-dimensional projection in practice.
Moreover, with other constraints for P (e.g., jjPð:; jÞjj2 

1), it can be solve with the ADMM algorithm [50].
Although it has similar performance, the inner iteration
with ADMM makes the algorithm complexity much
greater. (3) It is not appropriate to initialize H with a zero
value. In this case, the optimal solution for H-subproblem
will be zero, and subsequent optimizations for the other
subproblems (e.g., Z-subproblem in Eq. (16)) will have triv-
ial solutions. Therefore, we initialize H randomly in our
implementation, and H can also be initialized with other
preprocessing (e.g., PCA) to address the instability issue.

3.2 Generalized Latent Multi-view Subspace
Clustering

lLMSC assumes a linear relationship between the latent
representation and the features from each view. Accord-
ingly, relationships between different views are also linear.
Nevertheless, in real-world applications, relationships are
usually much more complex and non-linear. The kernel
trick is regularly adopted to implicitly address the non-
linearity problem by mapping data points onto a high-
dimensional space and then solving the learning algorithms
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in that space. However, the kernel is usually selected in an
ad hoc manner and hence suffers from generalization prob-
lem. Neural network-based methods [51], [52] can flexibly
learn highly non-linear mappings, so here we employ neu-
ral networks to address complex relationships between
the latent representation and the features from indivi-
dual views, and the non-linear interactions among multiple
views. Accordingly, we propose the generalized Latent
Multi-view Subspace Clustering method shown in Fig. 2.

The objective function of gLMSC is formulated as follows:

min
fuuvgVv¼1;H;Z

‘ðH;HZÞ þ
XV
v¼1

avdv
�
Xv; guuvðHÞ�þ �VðZÞ

with guuvðHÞ ¼ Wðk;vÞfðWðk�1;vÞ . . . fðWð1;vÞHÞÞ;
(21)

where ‘ð�; �Þ (corresponding to LSð�; �Þ in (4)) is the loss for
subspace representation, and dvð�; �Þ (corresponding to
LV ð�; �Þ in (4)) measures the distortion of reconstruction
from the latent representation to the observation in the vth
view. The neural network guuvðHÞ accounts for the non-linear
mapping, with fð�Þ being the activation function and Wðk;vÞ
being the weight matrix of between the kth and ðkþ 1Þth
layers for the vth view. The tradeoff factor av is used to con-

trol the fusion portion from the vth view, which encodes the

influence of the vth view on the latent representation. By
using a three-layer network, we propose the following

objective function for gLMSC under the low-rank constraint

for subspace representation:

min
fuuvgVv¼1;H;Z

1

2
H�HZk k2F

þ
XV
v¼1

av

2
Xv �Wð2;vÞfðWð1;vÞHÞ�� ��2

F
þ � Zk k�;

(22)

where the activation function used in our model is the tanh
function which is defined as:

fðaÞ ¼ tanhðaÞ ¼ 1� e2a

1þ e�2a
: (23)

Accordingly, the corresponding derivative can be calcu-
lated as

f 0ðaÞ ¼ tanh0ðaÞ ¼ 1� tanh2ðaÞ: (24)

To summarize, gLMSC has the following merits. (1) Our
model focuses on seeking the comprehensive common
representation of multiple views, based on which (and
instead of each single view) subspace clustering is per-
formed. (2) Since subspace clustering is specific for high-
dimensional data, therefore, for existing methods (e.g., [15],
[16]), the data should not have low-dimensional views. In
contrast, our method is free of the restraint due to the latent
representation. (3) Inter-view correlations are implicitly
encoded by the network which non-linearly maps the latent
representation to reconstruct each view. (4) Our framework
has flexibility due to the use of different components, i.e.,
both the network and the regularization terms are replace-
able (for example with low-rank/sparse/graph regulariza-
tion); 5) Although our work focuses on subspace clustering,
gLMSC can be considered a general multi-view representa-
tion learning framework.

3.2.1 gLMSC Optimization

The objective function in Eq. (22) can be solved as follows:

� Update the network parameters, i.e., Wð1;vÞ and
Wð2;vÞ. Letting Mv ¼ tanhðWð1;vÞHÞ and imposing
regularization on Wð1;vÞ and Wð2;vÞ, for the vth view,
we have

LW ¼ av

2
Xv �Wð2;vÞfðWð1;vÞHÞ�� ��2

F
þ gVðQQÞ; (25)

where VðQQÞ ¼ ð Wð1;vÞ
�� ��2

F
þ Wð2;vÞ

�� ��2
F
Þ and g > 0 is

the tradeoff parameter for model regularization of
the network. Then, we have

Fig. 2. Illustration of the proposed generalized Latent Multi-view Subspace Clustering (gLMSC). The latent representation non-linearly encodes
the information from multiple views with neural networks for uncovering the data distribution in subspaces. Our model can also be considered
as an unsupervised multi-view representation learning method, where the learned representation could be used for other potential applications.
For comparison, the dashlines indicate the linear LMSC (lLMSC) mentioned in Section 3.1.
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Wð2;vÞ ¼ XvM
T
v ðMvM

T
v þ g

av
IÞ�1; (26)

and

@LW

Wð1;vÞ
¼ av

�
ð1�Mv �MvÞ�

ðWT
ð2;vÞWð2;vÞMv �WT

ð2;vÞXvÞ
�
HT þ gWð1;vÞ;

(27)

where � denotes element-wise multiplication, 1 is a
matrix whose elements are all ones, and 1�Mv �Mv

is the gradient of Mv ¼ tanhðWð1;vÞHÞ. We update
Wð1;vÞ using the gradient descent (GD) algorithm.
The optimization procedure of our neural networks
is summarized in Algorithm 2.

� Update H. The update of H is similar to that of Wð1;vÞ
as follows:

@LH

H
¼

XV
v¼1

avW
T
ð1;vÞ

�
ð1�Mv �MvÞ�

ðWT
ð2;vÞWð2;vÞMv �WT

ð2;vÞXvÞ
�
þHðI� Z� ZT þ ZZT Þ

with LH ¼ 1

2
H�HZk k2F

þ
XV
v¼1

av

2
Xv �Wð2;vÞfðWð1;vÞHÞ�� ��2

F
:

(28)

We updateH using the gradient descent algorithm.
� Update Z. To update Z, we introduce an auxiliary

variable J and iteratively update Z, J and the multi-
plier Ywith ADMM as follows:

Z ¼ ðHTHþ mIÞ�1ðmJþ YþHTHÞ;
J ¼ argminJ

�

m
Jk k� þ

1

2
J� ðZ� Y=mÞk k2F ;

Y ¼ Yþ mðJ� ZÞ;

(29)

where it can be solved by singular value threshold-
ing [49] for updating J. The optimization procedure
is summarized in Algorithm 3.

3.3 Complexity and Convergence
The optimization of lLMSC comprises six sub-problems. For
clarification, we define k, d, and n as the dimensionality of
the latent representation, the sum of the dimensionalities
for multiple views, and the size of data, respectively. Then,
the complexities of the six sub-problems are induced as fol-
lows. For updating P and J (the nuclear norm proximal
operator), the complexities are Oðk2dþ d3Þ and Oðn3Þ,
respectively. The complexity of updating H with Bartels-
Stewart algorithm [48] is Oðk3Þ. The main computational
cost of updating Z is the matrix inversion, and the complex-
ity is Oðn3Þ. The complexity of updating E and multipliers
is Oðdknþ kn2Þ due to the matrix multiplication. Then,
the overall complexity of lLMSC is Oðk2dþ d3 þ k3 þ
n3 þ dknþ kn2Þ. Since the dimension of latent representa-
tion is usually much lower than that of original views, i.e.,
k 	 d, then the complexity is basically Oðd3 þ n3Þ. For the
complexity of gLMSC, the main computational cost arises
from three sub-problems. For the meanings of dð1;vÞ, dð2;vÞ,
please refer to Table 1. The complexities are Oðdð1;vÞknþ

d2ð1;vÞdð2;vÞ þ d2ð1;vÞnÞ, Oðdð1;vÞknÞ, and Oðd2ð1;vÞkþ d3ð1;vÞÞ for

updating M, Wð1;vÞ, and Wð2;vÞ, respectively. For updating H
and Z, the complexity is Oðdð2;vÞdð1;vÞnþ d2ð1;vÞdð2;vÞ þ d2ð1;vÞnþ
n3 þ kn2Þ and Oðn3Þ, respectively. Similarly, under the con-

dition d1 ¼ maxðfdð1;vÞgVv¼1Þ, d2 ¼ maxðfdð2;vÞgVv¼1Þ, and k 	
minðd1; d2Þ, the total complexity of gLMSC is Oðd31 þ n3 þ
d21nþ d21d2 þ d1d2nÞ. It is difficult to provide a general proof
of the convergence for our algorithm. Fortunately, compre-
hensive results on both synthesized and real data empirically
demonstrate that the proposed algorithm has very strong
and stable convergence, evenwith randomH initialization.

Algorithm 2. Update Networks with the GD Algorithm

Input: Multi-view data fXð1Þ; . . . ;XðV Þg, latent representation
H, hyperparameter �, learning rate h, dimensionality
k of latent representation H, and maximal iteration
number T .

Initialization: Initialize randomlyWð1;vÞ and t ¼ 1.
while t < T and not converged do
v ¼ 1;
for v 
 V do
UpdateMv byMv ¼ tanhðWð1;vÞHÞ;
UpdateWð2;vÞ according to (26);
UpdateWð1;vÞ byWð1;vÞ ¼ Wð1;vÞ � h

@LW
Wð1;vÞ

;
v ¼ vþ 1;

end
Check the convergence conditions:PV

v¼1 av Xv � guuvðHÞk k2F < �.
t ¼ tþ 1;

end
Output: fWð1;vÞ;Wð2;vÞgVv¼1.

4 EXPERIMENTS

4.1 Experimental Setting
To comprehensively evaluate our model, both synthetic and
real-world benchmark datasets are employed. We conduct
experiments on synthetic data to test the effectiveness of
using multiple views compared with a single view. We also
employ datasets from diverse applications including general
images, medical images, text, and community networks.
Specifically, we use the following datasets. ADNI1 consists
of 360 samples with Magnetic Resonance (MR) and Positron
Emission Tomography (PET) images, where 93 ROI-based

TABLE 1
Main Notations Used Throughout the Paper

Model Specification

Notation Meaning

XðvÞ 2 Rdv�n The feature matrix of the vth view
H 2 Rk�n The learned latent representation matrix
Z 2 Rn�n The subspace representation matrix
P 2 Rd�k; d ¼ P

v dv The projection from latent representation
to all views

ES 2 Rk�n, EV 2 Rd�n The reconstruction errors
Y1;Y2, Y3 Lagrangian multipliers for constraints
Wð1;vÞ 2 R

dð1;vÞ�k The neural networks parameters
Wð2;vÞ 2 R

dð2;vÞ�dð1;vÞ The neural networks parameters

1. http://adni.loni.usc.edu/
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neuroimaging features for each neuroimage (i.e., MRI or
PET) are extracted. Multilingual dataset Reuters [53] consists
of 2,000 samples with 5 types of languages and the docu-
ments are represented as a bag ofwords using a TFIDF-based
weighting scheme. Football2 is a collection of 248 English Pre-
mier League football players and clubs active on Twitter.
The disjoint ground truth communities correspond to the 20
clubs in the league. Politicsie3 is a collection of Irish politi-
cians and political organizations assigned to seven disjoint
ground truth groups according to their affiliation. The two
Twitter datasets are associated with 9 different views.
MSRCV1 [54] consists of 210 images from 7 classes. There are
6 types of features extracted: CENT, CMT, GIST, HOG, LBP,
and SIFT. BBCSport4 consists of documents of sports news
corresponding to 5 topics, where for each document two dif-
ferent types of features are extracted [55]. The dataset Ani-
mals with Attributes [56] consists of 30,475 images of 50
animals classes. We sampled 1/3 data points from each class
with equal interval to generate a subset with 10158 samples.
Two types of deep features (i.e., extracted with DECAF [52]
and VGG19 [57]) are used. We also extract two types of deep
features (extracted with DECAF and VGG19) for Caltech-101
which contains 8,677 images from 101 classes.

Algorithm 3. Optimization Algorithm for gLMSC

Input: Multi-view matrices: fXð1Þ; . . . ;XðV Þg, hyperparameter
� and the dimensionK of the latent representationH.

Initialization: m ¼ 10�6, r ¼ 1:2, � ¼ 10�4, maxm ¼ 106; ran-
domly initializeH andWð1;vÞ.
while not converged do
Update the networks by using Algorithm 2;
Update the latent representationH according to (28);
Update the subspace representation Z, J and Y according to
(29);
Update the parameter m by m ¼ minðrm; maxmÞ;
Check the convergence conditions:
jjJ� Zjj1 < �.

end
Output: Z andH.

We conduct experiments on multiple benchmark data-
sets to compare the following methods:

1) LRRBestSV [10] performs subspace clustering with the
low-rank constraint for each single view with the
best performance reported.

2) RMSC [55] recovers a shared low-rank transition
probability matrix as the input to the standard Mar-
kov chain.

3) DiMSC [15] enforces subspace representations of dif-
ferent views to be diverse to reduce redundancy and
then integrates them all into an affinity matrix.

4) LT-MSC [16] employs a low-rank tensor to enforce
the consistence in high-order manner to make use of
the complementary information of multiple views.

5) t-SVD-MSC [58] imposes a new type of low-rank ten-
sor constraint on the rotated tensor to capture the
complementary information from multiple views.

6) DSSC [59] proposes a deep extension of Sparse Sub-
space Clustering, termed Deep Sparse Subspace
Clustering (DSSC). We employ PCA to reduce the
number of dimensions for each view and then con-
catenate together all views.

7) MLAP [60] performs multi-view subspace clustering
by concatenating subspace representations of differ-
ent views together and imposing low-rank constraint
to explore the complementarity.

8) MSSC [61] exploits the complementarity by using a
common representation across different modalities.

9) lLMSC/gLMSC are the proposed linear/generalized
Latent Multi-View Subspace Clustering algorithms.

For clustering measures, normalized mutual information
(NMI), accuracy (ACC), F-measure, and Rand index (RI) are
employed to conduct comprehensively evaluation. Note
that a higher value indicates a better performance for each
metric. Since there are different accuracy definitions in clus-
tering, we specify the definition used in our experiments.
Given a sample xi, we denote the cluster and class labels as
vi and ci, respectively, giving

ACC ¼
PN

i¼1 dðci;mapðviÞÞ
n

; (30)

where dða; bÞ ¼ 1 when a ¼ b, otherwise dða; bÞ ¼ 0. mapðviÞ
is the permutation map function, which maps the cluster
labels into class labels. n is the number of samples. The best
map can be obtained by the Kuhn-Munkres algorithm.

For our algorithm, we tune the tradeoff parameter �
from the set f0:01; 0:1; 1; 10; 100g. For simplicity, we set
a1 ¼ � � � ¼ aV ¼ a and tune a from f0:1; 0:2; . . . ; 1:0g on all
datasets. The network parameter g (for regularization) is
fixed to 0.001. For the baseline approaches, we tune all the
parameters to report their best performances according to
the authors. The dimensionality of the latent representation
is relatively robust hence we set k ¼ 100 for all datasets,
which results in promising performance. Due to

Fig. 3. Experiments to evaluate the robustness of multi-view and single-
view methods on synthetic data.

2. http://mlg.ucd.ie/aggregation/
3. http://mlg.ucd.ie/aggregation/
4. http://mlg.ucd.ie/datasets/
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TABLE 2
Performance Comparison of Different Clustering Methods

Datasets Methods NMI ACC F-measure RI

ADNI

LRRBestSV 6.28 � 0.19 42.28 � 0.21 39.90 � 0.47 55.67 � 0.16
RMSC 6.81 � 0.30 42.78 � 0.46 38.34 � 0.63 55.65 � 0.12
DiMSC 5.84 � 0.12 39.17 � 0.36 40.12 � 0.33 50.88 � 0.23
LT-MSC 8.63 � 0.03 42.78 � 0.05 39.40 � 0.13 56.57 � 0.00

t-SVD-MSC 4.37 � 0.43 42.38 � 0.59 37.76 � 0.23 55.47 � 0.07
DSSC 6.98 � 0.53 44.17 � 0.56 39.82 � 1.20 55.50 � 0.49
MLAP 9.68 � 0.81 45.27 � 0.67 39.30 � 0.18 56.61 � 0.02
MSSC 5.89 � 0.45 44.45 � 0.60 38.47 � 0.21 55.44 � 0.02
lLMSC 8.20 � 0.19 45.56 � 0.21 40.78 � 0.40 55.50 � 0.16
gLMSC 10.98 � 0.15 46.67 � 0.23 41.91 � 0.20 57.20 � 0.11

Reuters

LRRBestSV 20.69 � 0.62 39.90 � 0.31 32.55 � 0.48 68.11 � 0.07
RMSC 19.00 � 0.75 39.46 � 1.29 31.86 � 1.40 68.05 � 0.92
DiMSC 18.21 � 0.33 40.00 � 1.13 28.68 � 0.39 67.49 � 0.28
LT-MSC 17.93 � 1.32 36.20 � 1.46 28.29 � 0.95 68.16 � 0.53

t-SVD-MSC 24.88 � 0.03 43.40 � 0.68 33.17 � 0.04 69.54 � 0.02
DSSC 12.86 � 1.25 42.78 � 2.03 35.61 � 2.19 66.90 � 0.78
MLAP 17.04 � 2.24 38.40 � 1.63 32.15 � 1.83 63.69 � 0.52
MSSC 20.56 � 0.63 44.50 � 1.04 37.23 � 1.12 62.09 � 0.36
lLMSC 27.99 � 0.79 47.90 � 0.64 40.15 � 0.50 70.08 � 0.39
gLMSC 23.00 � 1.00 42.70 � 0.99 34.76 � 1.21 65.37 � 0.63

Football

LRRBestSV 81.07 � 1.56 75.40 � 2.36 66.36 � 2.57 96.66 � 0.15
RMSC 84.34 � 2.04 78.55 � 3.84 70.97 � 4.01 97.08 � 0.44
DiMSC 82.16 � 1.45 75.40 � 2.26 67.13 � 1.19 96.74 � 0.59
LT-MSC 84.22 � 1.17 79.03 � 2.01 71.32 � 1.37 97.19 � 0.55

t-SVD-MSC 85.65 � 0.73 80.15 � 0.88 73.04 � 0.40 97.34 � 0.22
DSSC 78.16 � 1.38 76.81 � 1.25 48.44 � 2.14 92.52 � 0.63
MLAP 85.19 � 1.89 80.64 � 2.36 73.35 � 2.04 97.36 � 0.34
MSSC 84.27 � 0.93 84.65 � 1.37 74.78 � 2.16 97.50 � 0.43
lLMSC 83.96 � 2.08 80.24 � 2.18 70.82 � 1.09 97.14 � 0.82
gLMSC 89.31 � 2.22 86.25 � 1.45 79.40 � 1.40 97.97 � 0.73

Politicsie

LRRBestSV 72.94 � 3.37 64.94 � 4.58 64.59 � 3.06 85.36 � 2.06
RMSC 70.88 � 3.22 63.30 � 4.17 60.61 � 3.38 84.09 � 1.56
DiMSC 76.63 � 4.16 80.46 � 3.21 77.57 � 2.19 89.97 � 1.19
LT-MSC 68.61 � 1.22 64.08 � 1.56 62.69 � 1.53 84.59 � 0.90

t-SVD-MSC 76.86 � 1.55 78.86 � 2.10 75.58 � 1.60 89.39 � 0.77
DSSC 75.79 � 3.87 70.52 � 3.99 70.05 � 2.50 87.69 � 1.35
MLAP 78.10 � 2.01 71.26 � 2.37 72.26 � 1.34 88.66 � 1.72
MSSC 69.27 � 2.53 66.38 � 2.06 63.05 � 1.49 84.86 � 1.01
lLMSC 81.46 � 0.89 83.33 � 0.94 80.66 � 0.69 91.42 � 0.19
gLMSC 78.65 � 1.16 82.18 � 1.71 78.42 � 0.91 90.48 � 0.22

MSRCV1

LRRBestSV 56.47 � 2.09 66.19 � 2.73 51.72 � 3.56 68.34 � 1.28
RMSC 64.99 � 2.21 75.00 � 4.81 62.78 � 2.34 89.42 � 0.69
DiMSC 62.87 � 2.18 68.57 � 3.92 57.92 � 2.44 89.72 � 1.10
LT-MSC 70.04 � 0.13 80.00 � 0.09 68.48 � 0.03 91.12 � 0.00

t-SVD-MSC 96.03 � 0.03 98.10 � 0.01 96.16 � 0.03 98.93 � 0.00
DSSC 63.34 � 0.24 71.01 � 0.10 63.29 � 0.35 86.91 � 0.25
MLAP 66.71 � 0.52 72.86 � 0.76 64.45 � 0.38 89.98 � 0.08
MSSC 63.10 � 0.16 70.99 � 0.22 62.87 � 0.19 86.54 � 0.07
lLMSC 65.34 � 1.17 80.55 � 1.41 65.17 � 1.62 90.40 � 0.20
gLMSC 75.25 � 1.03 84.81 � 1.27 73.80 � 1.79 92.51 � 0.23

BBCSport

LRRBestSV 69.02 � 0.19 78.72 � 0.26 76.98 � 0.23 87.35 � 0.13
RMSC 60.84 � 0.75 73.72 � 0.37 65.51 � 0.20 92.29 � 0.33
DiMSC 85.11 � 0.13 95.10 � 2.17 91.02 � 0.14 95.72 � 0.10
LT-MSC 77.54 � 0.46 90.26 � 0.73 80.16 � 0.59 90.36 � 0.27

t-SVD-MSC 91.82 � 0.08 97.61 � 0.21 94.90 � 0.06 97.57 � 0.11
DSSC 72.56 � 0.32 89.43 � 0.13 81.19 � 0.26 92.91 � 0.01
MLAP 71.23 � 0.36 85.29 � 0.15 73.53 � 0.19 85.27 � 0.02
MSSC 69.96 � 0.39 79.78 � 0.92 76.13 � 0.51 87.27 � 0.34
lLMSC 82.59 � 0.81 91.07 � 0.59 88.65 � 0.77 94.53 � 0.15
gLMSC 88.66 � 0.46 96.32 � 0.78 92.54 � 0.26 96.49 � 0.11
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randomness, we run all algorithms 30 times and report the
mean values and standard deviations.

4.2 Results on Synthetic Data
First, we evaluate our algorithm in exploring multiple views
on synthetic data. In our experiment, the randomly gener-
ated matrices are produced by independently sampling ele-
ments from a uniform distribution within the range ½0; 1�.
The synthetic data are from 6 subspaces/clusters with the
sample numbers corresponding to these subspaces being
{25, 30, 35, 40, 45, 50}, respectively. First, the latent represen-
tation matrix H 2 Rk�n is generated randomly, with the
number of dimensions k ¼ 90 and the number of data points
n ¼ 225. These subspaces have 10, 12, 14, 16, 18, and 20 dis-
joint features, respectively. Then, based on the latent

representation matrix H two views are produced with

XðvÞ ¼ PðvÞHþ EðvÞ. Two types of noise are considered for
EðvÞ: EðvÞ ¼ EðvÞ

s þ aEðvÞ
g , where EðvÞ

g and EðvÞ
s are global and

sample-specific noises, respectively. For EðvÞ
s , we randomly

select a subset of columns (20 in our experiments), and set
the other columns to zeros. For EðvÞ

g , we multiply it with a
scalar 0 < a < 1 to tune the noise degree. In Fig. 3a,
benefiting from the complementarity of multiple views our
approach obtains much better performance compared to
that using a single view of features with different degrees of
noise. In Fig. 3b, we provide a visualization of affinity matri-
ces for both single view and multiple views with a ¼ 0:5.
The affinity matrix of multiple views reveals the underlying
cluster structure much better than using a single view.

4.3 Results on Real Datasets
We next test our model on diverse real-world applications
including medical image/general image clustering, com-
munity detection, and text clustering. Tables 2 and 3 present
the clustering results of different clustering approaches.
From Tables 2 and 3, the following observations can be
made: (1) overall, lLMSC achieves very competitive and sta-
ble performance compared to most baselines. Taking the

datasets Reuters and Politicsie for example, lLMSC outper-
forms all the traditional methods; (2) by exploring the gen-
eral correlation with a neural network, gLMSC significantly
improves lLMSC on 6 out of 8 datasets. For example,
the NMI improvements of gLMSC over lLMSC are about
5.3 and 6.1 percent on Football and BBCSport, respectively;
The potential reasons why gLMSC does not always outper-
form lLMSC may be: first, for some cases (e.g., Reuters: each
document is associated with multiple types of languages),
the linear model is enough to model the correlations among
different views; second, although gLMSC is more general
than lLMSC, there is no global optimal solution guaranteed
for both gLMSC and lLMSC; (3) although the performance
of our method is not always top, the performance is rather
robust across different datasets, while the performance of
some methods is very unpredictable and variable. For
example, MLAP achieves the promising performance on
ADNI and CALTECH. However, on Reuters and BBCSport,
MLAP does not perform very well; (4) we also compared
our algorithm with Deep Sparse Subspace Clustering [59]
and t-SVD-MSC [58], while the performance of gLMSC is
consistently better than them. For example, the performance
improvements over t-SVD-MSC are about 6.1 and 3.3 per-
cent on the two community datasets, i.e., Football and
Politicsie, in terms of accuracy. The method t-SVD-MSC
emphasizes the consistence over different views due to
the low-rank constraint, while it is a challenge for it to bal-
ance the consistence and the complementarity. While our
algorithm can handle this issue due to the flexible encoding
of the intrinsic information from different views; (5) the per-
formance of single-view methods with the best view is gen-
erally worse than multi-view methods, confirming that it is
useful to incorporate multiple views.

Is the Latent Representation Good? To investigate the
improvement gains of our approach, we compare the latent
representation of our algorithm, Generalized Canonical
Correlational Analysis [62], Deep Canonical Correlation
Analysis [42] and features of each single view by

TABLE 3
Performance Comparison of Different Clustering Methods

Datasets Methods NMI ACC F-measure RI

ANIMAL

LRRBestSV 34.59 � 0.60 28.83 � 0.33 16.99 � 0.47 96.36 � 0.31
RMSC 70.46 � 1.84 61.58 � 4.50 54.30 � 4.16 97.95 � 0.35
DiMSC 44.62 � 0.89 32.61 � 1.81 20.66 � 1.10 96.30 � 0.23
LT-MSC 41.29 � 0.40 33.65 � 0.67 21.65 � 0.49 96.53 � 0.16

t-SVD-MSC 70.66 � 0.19 63.44 � 0.23 54.40 � 0.26 97.91 � 0.01
DSSC – – – –
MLAP 69.98 � 0.03 63.32 � 0.06 52.61 � 0.11 97.88 � 0.18
MSSC 66.93 � 0.35 59.24 � 0.32 50.12 � 0.15 97.22 � 0.02
lLMSC 70.11 � 0.25 59.86 � 0.29 51.90 � 0.64 97.86 � 0.01
gLMSC 72.66 � 0.35 64.47 � 0.44 54.54 � 0.37 97.97 � 0.08

CALTECH

LRRBestSV 77.59 � 1.23 52.58 � 2.00 36.86 � 1.82 97.48 � 0.70
RMSC 81.41 � 1.57 56.02 � 2.10 27.35 � 2.63 97.58 � 0.56
DiMSC 63.72 � 0.99 37.09 � 1.81 25.47 � 2.11 97.02 � 0.34
LT-MSC 80.38 � 1.58 56.02 � 1.11 39.86 � 1.26 97.59 � 0.73

t-SVD-MSC 81.51 � 1.40 56.60 � 0.79 40.43 � 1.10 97.58 � 0.46
DSSC – – – –
MLAP 82.03 � 1.09 57.62 � 1.57 42.30 � 0.77 97.57 � 0.36
MSSC 78.14 � 0.45 55.90 � 0.66 42.11 � 0.29 97.02 � 0.07
lLMSC 76.26 � 1.11 52.84 � 1.30 37.72 � 0.96 97.48 � 0.22
gLMSC 81.63 � 1.10 59.68 � 0.60 41.90 � 0.41 97.68 � 0.28
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TABLE 4
Performance Comparison between Single View and the Learned Latent Representation

Datasets Methods NMI ACC F-measure RI

ADNI

View1 10.06 � 0.20 48.33 � 0.34 40.42 � 0.09 55.32 � 0.15
View2 2.33 � 0.16 41.50 � 0.70 38.28 � 0.38 54.12 � 0.06
GCCA 1.49 � 0.21 41.94 � 0.37 41.43 � 0.14 52.45 � 0.06
DCCA 3.93 � 0.32 37.33 � 0.64 41.37 � 0.25 54.08 � 0.13

Latent(lLMSC) 10.21 � 0.11 44.72 � 0.51 46.58 � 0.35 54.85 � 0.40
Latent(gLMSC) 11.15 � 0.39 45.00 � 0.29 46.38 � 0.70 56.31 � 0.17

Reuters

View1 19.89 � 6.56 41.74 � 7.00 39.26 � 4.12 51.05 � 6.77
View2 16.64 � 7.35 40.94 � 6.65 34.19 � 2.56 51.03 � 3.21
View3 21.18 � 8.58 42.22 � 3.85 36.05 � 4.04 58.56 � 5.92
GCCA 28.18 � 5.26 37.43 � 4.00 33.96 � 2.73 69.58 � 3.68
DCCA 17.40 � 3.57 42.67 � 5.39 36.79 � 3.86 54.37 � 5.11

Latent(lLMSC) 31.21 � 0.65 38.98 � 2.77 39.32 � 1.20 60.71 � 4.02
Latent(gLMSC) 31.23 � 4.82 42.94 � 3.63 39.79 � 2.92 68.76 � 4.11

Football

View1 64.13 � 2.31 52.82 � 2.42 29.61 � 2.66 85.31 � 1.38
View2 67.21 � 2.35 62.10 � 2.24 38.17 � 3.32 89.04 � 1.07
View8 62.65 � 2.33 50.81 � 2.36 25.72 � 2.45 85.93 � 1.03
GCCA 39.87 � 1.42 25.81 � 2.07 12.25 � 2.67 63.41 � 1.44
DCCA 79.56 � 1.99 64.19 � 2.14 54.08 � 2.46 94.35 � 0.73

Latent(lLMSC) 70.61 � 2.40 61.69 � 3.71 44.81 � 2.19 93.56 � 1.17
Latent(gLMSC) 83.29 � 1.95 70.56 � 1.32 66.69 � 1.72 95.56 � 0.89

Politicsie

View1 56.47 � 1.86 45.11 � 1.91 48.76 � 1.90 77.61 � 0.76
View2 44.04 � 2.13 43.97 � 1.53 36.22 � 2.86 68.10 � 1.22
View8 18.01 � 1.69 39.37 � 2.05 34.33 � 3.45 62.04 � 1.01
GCCA 20.65 � 2.67 52.30 � 1.88 41.29 � 2.09 42.60 � 1.43
DCCA 56.19 � 1.07 60.06 � 1.55 49.31 � 2.62 78.42 � 1.23

Latent(lLMSC) 72.36 � 2.17 67.58 � 1.99 60.28 � 2.00 83.81 � 1.46
Latent(gLMSC) 74.10 � 2.81 68.10 � 2.72 64.86 � 2.58 85.26 � 1.20

MSRCV1

View1 51.95 � 3.12 54.00 � 5.94 47.91 � 4.30 83.80 � 0.41
View3 62.03 � 0.72 70.42 � 0.51 58.95 � 0.85 88.39 � 0.13
View4 53.45 � 1.41 60.63 � 1.69 49.79 � 2.13 85.57 � 1.46
GCCA 62.51 � 2.12 69.05 � 1.57 58.48 � 1.64 86.89 � 0.85
DCCA 41.20 � 0.16 54.29 � 0.70 38.32 � 0.38 81.63 � 0.06

Latent(lLMSC) 71.67 � 1.31 80.76 � 1.27 68.92 � 1.76 90.64 � 0.96
Latent(gLMSC) 72.99 � 1.36 82.36 � 1.41 70.15 � 1.66 91.37 � 0.55

BBCSport

View1 59.64 � 17.04 64.17 � 15.26 62.43 � 13.46 73.73 � 15.41
View2 23.17 � 16.86 44.85 � 8.47 44.47 � 7.80 42.69 � 12.36
GCCA 59.59 � 7.78 75.92 � 3.89 70.50 � 5.57 84.92 � 6.65
DCCA 35.52 � 12.63 64.52 � 6.98 48.57 � 6.63 76.81 � 11.54

Latent(lLMSC) 62.18 � 12.45 66.66 � 12.15 63.96 � 12.18 76.72 � 12.30
Latent(gLMSC) 76.13 � 13.21 77.21 � 13.68 73.32 � 12.98 87.02 � 11.55

Fig. 4. Visualization of different views and latent representation with t-SNE on the MSRCV1 dataset.
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conducting k-means over them. As shown in Table 4, the
performance using our latent representation is generally
better than those using single-view features. This is empiri-
cal proof of the added value of the latent representation
compared to the original features. Although nonlinear cor-
relations are involved in the CCA-based algorithms, i.e.,
DCCA and GCCA, the performances are not promising
compared with ours. One of the main possible reason is that
the representation learning and clustering are separated for
these algorithms, thus the learned representations are not
guaranteed to be suitable for clustering. Furthermore, we
visualize the features of each view and the latent representa-
tion using t-Distributed Stochastic Neighbor Embedding (t-
SNE) [63] on MSRCV1. As shown in Fig. 4, the visualization
is consistent with the clustering results shown in Table 4.
Specifically, Fig. 4c (corresponding to view3) and (d) (corre-
sponding to view4) more clearly reveal the underlying
cluster structure, and the corresponding clustering perfo-
rmances are also much better than other views. Figs. 4g and
4h (corresponding to latent representation) further validate
the advantage of our model, since the clusters are more
compact and separable than those of the original features
corresponding to different views.

Parameter Tuning and Convergence. Fig. 5 shows the results
of our method using different parameters (taking BBCSport
as an example). The performances of our linear and general-
ized models are both relatively stable and promising, as
shown by the results achieved by setting � in a relatively
large range. The bottom of Fig. 5 presentsmodel performance
with respect to dimensionality (k) of the latent representa-
tion. Promising performance can be expected with relatively
low dimensionality. Moreover, while gLMSC needs a latent
representation of higher dimensionality than that of lLMSC,
its performance is generally better because the more general
correlation is addressed. Fig. 6 empirically shows that our
algorithms convergewithin a small number of iterations.

5 CONCLUSIONS AND DISCUSSION

Here we introduce the latent representation into multi-view
subspace clustering. Our model effectively encodes comple-
mentarity in multiple views for subspace clustering under
the assumption-each single feature view originates from
one comprehensive latent representation. This is essentially

different from existingmulti-view subspace clustering appro-
aches that perform self-representation directly within the sin-
gle view or simply project each view of feature to a common
space. The latent representation and the self-representation-
based clustering complement each other. More importantly,
by using a neural network-based approach to learn non-linear
mappings, our model can handle more general correlations
between the latent representation and each feature view.
Experiments on both synthetic and benchmark datasets
verify the clear advantages of the learned latent representa-
tion for multi-view subspace clustering compared to the
state-of-the-artmulti-view clusteringmethods.

Our model is able to flexibly explore the complementar-
ity among multiple views for subspace clustering. However,
there are several issues that require further clarifications
and possible future investigations. First, since graph (of the
size n� n) is involved for existing subspace clustering
methods which leads to computational cost matrix opera-
tions. The time complexities of these subspace based clus-
tering methods are generally in the same order. Specifically,
SVD decomposition and matrix inversion are employed in
our method which makes our algorithm with high compu-
tational cost. In the future, sampling technique and binary
representations [64] will be considered to accelerate the
clustering speed. Second, the quality differences for differ-
ent views are not considered. The performance could be
degraded, when low-quality views are more dominating.
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